This lemma is extremely useful in the probabilistic method: if you can prove that the set of objects satisfying a certain number of constraints has positive probability (or density), then this set cannot be empty. In particular, an object satisfying those constraints do exist. However, this method does not explicitly build the desired object. The constructive version of the Lovász local lemma was given by Moser and Tardos, as explained in this previous post.
1. Lovász Local Lemma
Let A_1,\dots,A_n be a set of bad events. These events are not necessarily mutually independent. For each index 1\le i \le n, we denote by D_i \subseteq \{1,\dots,n\} the set of indices such that the events A_i, A_j with j \not\in D_i are mutually independent. In other words, D_i is the dependency set of the event A_i.
The lemma states:
If there exists real values x_1,\dots,x_n \in [0,1) such that \mathbb{P}(A_i) \le x_i \cdot \prod_{j \in D_i} (1-x_j) ~~~~~ (\star) then \mathbb{P}\left(\bigwedge\limits_{i=1}^n \overline{A}_i\right) \ge \prod_{i=1}^n (1-x_i).The proof goes as follows. We first show that for any index 1\le i \le n and any strict subset S \subset \{1,\dots,n\}, we have
\mathbb{P}\left( A_i ~\bigg|~ \bigwedge\limits_{j \in S} \overline{A_j} \right) \le x_i.
We prove this claim by induction on the size m = |S|. The case m = 0, i.e., S = \emptyset, follows from (\star). Now, assume the result holds for all subset of size less than m. We split the set S in two disjoint parts S_D = S \cap D_i and S_I = S - S_D. The indices in S_D (resp. S_I) are exactly the indices in S of events that are not independent (resp. that are independent) from A_i. We have, by the chain rule of conditional probabilities:
\begin{align*} \mathbb{P}\left(A_i ~\bigg|~ \bigwedge\limits_{j \in S} \overline{A_j} \right) &= \mathbb{P}\left(A_i ~\bigg|~ \bigwedge\limits_{k \in S_D} \overline{A_k} \land \bigwedge\limits_{l \in S_I} \overline{A_l} \right) \\ &= \frac{\mathbb{P}\left(A_i \land \bigwedge\limits_{k \in S_D} \overline{A_k} ~\bigg|~ \bigwedge\limits_{l \in S_I} \overline{A_l} \right)}{\mathbb{P}\left(\bigwedge\limits_{k \in S_D} \overline{A_k} ~\bigg|~ \bigwedge\limits_{l \in S_I} \overline{A_l} \right)}\\ &\le \frac{\mathbb{P}\left(A_i ~\bigg|~ \bigwedge\limits_{l \in S_I} \overline{A_l} \right)}{\mathbb{P}\left(\bigwedge\limits_{k \in S_D} \overline{A_k} ~\bigg|~ \bigwedge\limits_{l \in S_I} \overline{A_l} \right)} \end{align*}
Since the events A_i, A_l , l \in S_I, are mutually independent, we have:
\begin{align*} \mathbb{P}\left(A_i ~\bigg|~ \bigwedge\limits_{j \in S} \overline{A_j} \right) &\le \frac{\mathbb{P}\left(A_i \right)}{\mathbb{P}\left(\bigwedge\limits_{k \in S_D} \overline{A_k} ~\bigg|~ \bigwedge\limits_{l \in S_I} \overline{A_l} \right)}\\ &\le \frac{x_i \cdot \prod_{j\in D_i} (1-x_j)}{\mathbb{P}\left(\bigwedge\limits_{k \in S_D} \overline{A_k} ~\bigg|~ \bigwedge\limits_{l \in S_I} \overline{A_l} \right)} \end{align*}
Regarding the denominator, denoting S_D = \{k_1,\dots,k_s\}, and S_D^r = \{k_1,\dots,k_r\} for any 1 \le r \le s, we have
\begin{align*} \mathbb{P}\left(\bigwedge\limits_{k \in S_D} \overline{A_k} ~\bigg|~ \bigwedge\limits_{l \in S_I} \overline{A_l} \right) &= \prod_{r = 1}^s \mathbb{P}\left( \overline{A}_{k_r} ~\bigg|~ \bigwedge\limits_{l \in S_I \sqcup S_D^r} \overline{A_l} \right)\\ &= \prod_{r = 1}^s \left(1 - \mathbb{P}\left( A_{k_r} ~\bigg|~ \bigwedge\limits_{l \in S_I \sqcup S_D^r} \overline{A_l} \right)\right) \\ &\ge \prod_{r = 1}^s (1 - x_{k_r}) = \prod_{j \in S_I} (1 - x_j). \end{align*}
The last inequality follows from the induction hypothesis. We conclude that
\begin{align*} \mathbb{P}\left(A_i ~\bigg|~ \bigwedge\limits_{j \in S} \overline{A_j} \right) &\le x_i \cdot \frac{\prod_{j \in D_i} (1 - x_j)}{\prod_{j \in S_I} (1 - x_j)} \\ &\le x_i ~~~ \text{ since } S_I \subseteq D_i. \end{align*}
This concludes the induction proof.
We apply this inequality to prove the Lovász lemma. Indeed, we have
\begin{align*} \mathbb{P}\left(\bigwedge\limits_{i=1}^n \overline{A}_i\right) &= \prod_{i=1}^n \left( 1 - \mathbb{P}\left( A_i ~\bigg|~ \bigwedge\limits_{1 \le j < i} \overline{A}_j \right)\right) \\ &\ge \prod_{i=1}^n (1-x_i). \end{align*}
2. Other formulations
The previous formulation is quite general. A restricted formulation is given by the following:
Assume \mathbb{P}(A_i) \le p < 1 for all 1 \le i \le n. Let d be the maximum size of the dependency sets D_i's. If e\cdot p\cdot (d+1) \le 1, then \mathbb{P}\left(\bigwedge\limits_{i=1}^n \overline{A}_i\right) \ge (1- \frac{1}{d+1})^n > 0.Indeed,let's take x_i = 1/(d+1). It suffices to prove that
p \le \frac{1}{d+1} \cdot \left(1-\frac{1}{d+1}\right)^d
But we have
\begin{align*} \left(1-\frac{1}{d+1}\right)^d \ge \left(1-\frac{1}{d}\right)^d \ge \frac{1}{e} \end{align*}
Another restricted formulation is given as follows:
If \sum_{j \in D_i} \mathbb{P}(A_j) \le 1/4 for all i, then \mathbb{P}\left(\bigwedge\limits_{i=1}^n \overline{A}_i\right) \ge \prod_{i=1}^n \left(1- 2\mathbb{P}(A_i)\right) > 0.Indeed, let's take x_i = 2\mathbb{P}(A_i). The condition imposes that each x_i \in [0,1]. One can easily shows by induction on the size of D_i that
\begin{align*} \prod_{j \in D_i} \left(1- 2\mathbb{P}(A_j)\right) &\ge 1 - \sum_{j\in D_i} 2\mathbb{P}(A_j) \\ &\ge \frac{1}{2} \end{align*}
Therefore, \mathbb{P}(A_i) \le x_i \prod_{D_i} (1-x_j) is satisfied for all i.
pb